Цитозоль: перенос и биосинтез групп » Знакомство с Янусом, двуликим посредником
 (голосов: 0)
У древних римлян было божество по имени Янус — в честь него назван месяц январь. Янус был двуликим — одно его лицо обращено в прошлое, другое — в будущее. Биохимия открыла своего Януса в качестве связующего демона биосинтеза. Он образуется в результате нуклеофильной атаки кислородсодержащего строительного блока (X—ОН или X—О" ) на АТФ или какую-либо родственную богатую энергией молекулу, которую мы обозначим условно А—В, чтобы не вдаваться в дебри химии. Атака начинается атомом кислорода:В этой реакции осуществляется перенос радикала В+ (группы В) от А—В к X—О-.Двойственный характер структуры В—О—X объясняется тем, что она может также участвовать в переносе радикала Х+ (группы X), например при атаке со стороны строительного блока У—Н или У-:Теперь посмотрим, что происходит, когда две реакции протекают одна за другой.Мы наблюдаем гидролиз А—В и дегид-ратационное конденсирование X—У. Но воды в этой реакции нигде нет. Она переносится в скрытой форме от X—ОН к В—ОН центральным атомом кислорода Януса, когда происходит (в большей или меньшей степени) возврат группового потенциала от А—В в связь X—У. Таким образом, Янус выполняет роль передатчика связанной с группой энергии и носителя скрытой воды; образно говоря, это Меркурий и Аквариус в одном лице, если позволительна такая вольность в отношении мифологии.
Этот механизм можно подтвердить экспериментально, добавив к клеткам молекулы X—ОН, меченные тяжелым изотопом — кислородом 18 О, и проанализировав продукты реакции на масс-спектрографе. 18 О обнаруживается в В—ОН, а не в воде, как можно было бы ожидать, если бы реакция представляла собой обычное дигидратационное конденсирование.
Таков многоликий механизм биосинтеза. Но суть его всегда заключается в после довательном транспорте групп, связанных двуликим промежуточным звеном (посредником). Характерные анатомические черты посредника — две способные к переносу группы, связанные центральным атомом кислорода. При приближении к ним слева можно увидеть богатую энергией группу В, связанную с носителем X—О-. При приближении справа вполне убедительно покажется, что группа X предлагается носителем В—О-.
Согласно этой общей схеме, биосинтез всегда происходит как минимум в два этапа, объединенных Янусом. Первый этап, зависящий от какого-либо типа переноса групп от энергетического донора (АТФ или другой родственной молекулы), необходим для того, чтобы поднять группу X с нулевого энергетического уровня (X—ОН) на вы-сокоэнергетический уровень, который она занимает в Янусе. Этот этап называется активацией. Второй, заключительный этап или сборка, во время которого группа X переносится к ее естественному акцептору У, сопровождается понижением уровня активации с высокоэнергетического до уровня X—У.
В одном из вариантов этого основного двухэтапного механизма, имеющем важное значение, Янус жертвует свою активированную группу носителю, который сам переносит ее к конечному биосинтетическому акцептору, как показано ниже в последовательности реакций.
В таком трехэтапном механизме группа X, в комбинации с носителем, остается на сравнительно высоком энергетическом уровне, оставляя основную часть энергии для последнего этапа сборки (см. выше), что вполне соответствует процессу, который приводит к образованию стабильного продукта. Таким образом, работа клетки во многом напоминает работу носителя, который сначала поднимает строительные материалы вверх с помощью подъемного крана, затем передвигает их вокруг в горизонтальном направлении и только после этого опускает на место.
В ряде случаев активация и сборка осуществляются ферментом, затем катализирующим какой-то согласованный процесс, в котором Янус остается связанным с ферментом. Такие бифункциональные ферменты называются синтетазами или лигазами (лат. Идаге — связывать). Без них многие биосинтетические процессы были бы неэффективными или вовсе бы не происходили. Промежуточные продукты часто представляют собой крайне нестабильные молекулы, которые не в состоянии долго существовать в одиночку. Нередко они являются соединениями с таким высоким групповым потенциалом, что не могут с помощью сопряженного расщепления донорской группы А—В, единственного источника энергии, образовываться в концентрациях, достаточно высоких для их эффективного распространения между двумя физически разобщенными ферментами. Посредники связаны с ферментами и стратегически располагаются таким образом, чтобы их можно было немедленно захватить в процессе экзергонической сборки. Такое расположение помогает преодолеть трудности описанного процесса.
С другой стороны, зачастую для клетки важно, а иногда даже необходимо, чтобы два этапа синтеза происходили на разных участках. Активация требует затрат энергии и участия АТФ; обычно она происходит в цитозоле или каком-нибудь участке, тесно связанном с цитозолем и снабженном молекулами АТФ, например на цитозольной стороне мембраны. Что же касается сборки, то она во многом зависит от получения информации, которая легко обеспечивается структурным субстратом, например рибосомами при синтезе белка или нуклеиновыми кислотами в хромосомах. Другое преимущество поэтапного физического разделения заключается в том, что при этом обеспечивается централизация. Одной-единственной реакции активации достаточно для каждой группы X, чтобы затем ее можно было перенести в готовой к утилизации форме к любому количеству участков сборки. На самом же деле экономия энергии еще больше: клетка часто использует этап транспортировки для модификации или какого-либо изменения группы X, так что энергия от одной реакции может питать несколько биосинтетических блоков для химической модификации каждого из них.
Когда сборка отделена от активации, требуется стабильная транспортная форма активированного строительного блока; вот почему этап активации должен быть достаточно экзергоническим сам по себе, чтобы производить достаточные концентрации вещества. Этим требованиям отвечают некоторые посредники Януса; их часть В—О - выступает в качестве носителя группы X. В других случаях требования удовлетворяются благодаря специфическим носителям. Почти неизменно в таких случаях активация строительных блоков и их прикрепление к носителю совершаются одним ферментом типа лигазы, а несколько важных коферментов являются носителями групп.
Роль активации как предпосылки метаболического процесса не ограничивается биосинтезом. На самом деле значительная часть метаболизма требует прежде всего активации субстрата. Это характерно так-же для многих катаболических реакций, как мы могли убедиться на примере гликолиза. Таким образом, носители групп служат своего рода «рукоятками», посредством которых присоединенные молекулы представляются модифицирующим ферментом.
Но вот наконец настало время облечь схематические абстракции в химическую плоть. Готовясь к нашему путешествию, мы всячески старались избегать химических тонкостей. Но есть предел тому, что можно понять в основополагающем механизме химии без знания химического языка. Те, для кого следующая часть нашего путешествия покажется слишком сложной, не должны терять самообладания. Даже если они во многом пропустят ее, то позже смогут при-соединиться к нам без особого труда. Те же из вас, кто имеет лучшую подготовку по биохимии, надеюсь, получат удовольствие от путешествия и, возможно, с высоты птичьего полета смогут по-новому взглянуть на биосинтез. Итак, приглашаем последовать за нами.

Добро пожаловать в интересный мир молекул и клеток



Разделы сайта
 Рейтинг@Mail.ru
Календарь обновлений
«    Май 2016    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
Архив новостей
Облако тегов
Популярные новости
Наш опрос